In-situ generation of gold nanoparticles on MnO2 nanosheets for the enhanced oxidative degradation of basic dye (Methylene Blue).
نویسندگان
چکیده
In this work, the gold nanoparticles (Au-NPs) were in-situ generated on the surface of MnO2 nanosheets to form MnO2/Au-NPs nanocomposite in a simple and cost-effective way. Multiple experiments were carried out to optimize the oxidation of basic dye (Methylene Blue (MB)), including the molar ratio of MnO2 to chloroauric acid (HAuCl4), the pH of the solution and the effect of initial material. Under the optimal condition, the highest degradation efficiency for MB achieved to 98.9% within 60 min, which was obviously better than commercial MnO2 powders (4.3%) and MnO2 nanosheets (74.2%). The enhanced oxidative degradation might attribute to the in-situ generation of ultra-small and highly-dispersed Au-NPs which enlarged the synergistic effect and/or interfacial effect between MnO2 nanosheets and Au-NPs and facilitated the uptake of electrons by MnO2 from MB during the oxidation, thus validating the application of MnO2/Au-NPs nanocomposite for direct removal of organic dyes from wastewater in a simple and convenient fashion.
منابع مشابه
Photocatalytic degradation of methylene blue dye over immobilized ZnO nanoparticles: Optimization of calcination conditions
In the present study, calcination conditions during the synthesis of zinc oxide nanoparticles were optimized using response surface methodology (RSM) based on central composite design (CCD). After that, the effect of the type of UV irradiation on the photocatalysis of methylene blue (MB) dye was studied based on the kinetic model obtained at optimum conditions. Analysis of variance (ANOVA) exhi...
متن کاملPhotodegradation of Methylene Blue Solution via Au Doped TiO2 Nanocomposite Catalysts Prepared Using Novel Photolysis Method
Gold doped TiO2 has been successfully synthesized via the photolysis method and is characterized by different techniques. NPs of gold doped TiO2 were utilized for the degradation of methylene blue as a material pigmentation pollutant. The substitution of Au on TiO2 surface was established via XRD, EDX, TEM, and FT-IR techniques. The TEM and SEM results appea...
متن کاملEnhanced Phtocatalytic Activity of α-Fe2O3 Nanoparticles Using 2D MoS2 Nanosheets
α‒Fe2O3/MoS2 nanocomposites were synthesized via hydrothermal method and characterized in terms of crystal structure, particle size and morphology, elemental purity and optical properties. Results confirmed the formation of α‒Fe2O3/MoS2 nanocomposites containing hematite nanoparticles with average diameter of 40 nm and MoS2 nanosheets with hexagonal crystal structure and sheet thickness o...
متن کاملCodeposition of Fe3O4 Nanoparticles Sandwiched Between g-C3N4 and TiO2 Nanosheets: Structure, Characterization and High Photocatalytic Activity for Efficiently Degradation of Dye Pollutants
Novel ternary nanocomposite photocatalysts based on g-C3N4/Fe3O4/TiO2 nanosheet were synthesized using simple solid combustion, hydrothermal and wetness impregnation methods. The g-C3N4 nanosheet (2D)/ Fe3O4/ TiO2 nanosheet (2D) triad-interface nanocomposite arranged in the form of Fe3O4 nanoparticle was sandwiched and well dispersed on the surface between g-C3N4 and TiO2 nanosheets. The synthe...
متن کاملHydrothermally synthesized nanocrystalline Nb2O5 and its visible-light photocatalytic activity for the degradation of congo red and methylene blue
Nb2O5 nanoparticles were synthesized by the hydrothermal method. Structural, morphological and elemental analysis of synthesized Nb2O5 nanoparticles was carried out using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy, respectively. The average crystal size calculations were performed on the basis ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of environmental sciences
دوره 65 شماره
صفحات -
تاریخ انتشار 2018